# Constant expressions

### March 15, 2024

We made it through all the conversion rules! Let’s change gear and talk about…

#### Constant expressions

Constant expressions may contain only constant operands and are evaluated at compile time.

Or framed differently: Any expression that contains non-constant operands, is not a constant expression.

If you have a constant expression (e.g. `1 + 2`) then extend it with a non-constant operand (e.g. `1 + 2 + userCount()`), then it is no longer a constant expression.

(Actually, in this example, we have a non-constant expression made up of two operands, one of which is itself a constant expression `1 + 2`, and the other which is the non-constant expression `userCount()`).

Untyped boolean, numeric, and string constants may be used as operands wherever it is legal to use an operand of boolean, numeric, or string type, respectively.

A constant comparison always yields an untyped boolean constant. If the left operand of a constant shift expression is an untyped constant, the result is an integer constant; otherwise it is a constant of the same type as the left operand, which must be of integer type.

Any other operation on untyped constants results in an untyped constant of the same kind; that is, a boolean, integer, floating-point, complex, or string constant. If the untyped operands of a binary operation (other than a shift) are of different kinds, the result is of the operand’s kind that appears later in this list: integer, rune, floating-point, complex. For example, an untyped integer constant divided by an untyped complex constant yields an untyped complex constant.

All of this is just to explain the resulting type of a constant expression, which matters when composing complex expressions, or assigning to a variable, for example.

We’ll end today with a long table of examples:

``````const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
const b = 15 / 4           // b == 3     (untyped integer constant)
const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
const d = 1 << 3.0         // d == 8     (untyped integer constant)
const e = 1.0 << 3         // e == 8     (untyped integer constant)
const f = int32(1) << 33   // illegal    (constant 8589934592 overflows int32)
const g = float64(2) >> 1  // illegal    (float64(2) is a typed floating-point constant)
const h = "foo" > "bar"    // h == true  (untyped boolean constant)
const j = true             // j == true  (untyped boolean constant)
const k = 'w' + 1          // k == 'x'   (untyped rune constant)
const l = "hi"             // l == "hi"  (untyped string constant)
const m = string(k)        // m == "x"   (type string)
const Σ = 1 - 0.707i       //            (untyped complex constant)
const Δ = Σ + 2.0e-4       //            (untyped complex constant)
const Φ = iota*1i - 1/1i   //            (untyped complex constant)
``````

Quotes from The Go Programming Language Specification Language version go1.22 (Feb 6, 2024)